Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(12-Hydroxymethyl-5,5,7,12,14-pentamethyl-1,4,8,11-tetraazacyclo-tetradecane- N-acetato- $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime},-$ $\left.O, O^{\prime}\right)$ cobalt(III) chloride perchlorate monohydrate

Kaliyamoorthy Panneerselvam, ${ }^{\text {a }}$ Tian-Huey Lu, ${ }^{\text {a* }}$ Ta-Yung Chi, ${ }^{\text {b }}$ Shu-Fang Tung ${ }^{\text {c }}$ and Chung-Sun Chung ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, and ${ }^{\text {c }}$ Southern Instrument Center, National Cheng Kung University, Tainan, Taiwan 701, Republic of China Correspondence e-mail: thlu@phys.nthu.edu.tw

Received 25 February 2000
Accepted 10 March 2000

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right) \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\mathrm{III}}$ ion has a distorted octahedral geometry, with four N atoms and two O atoms constituting the coordination sphere. The crystal structure is stabilized by a three-dimensional network of hydrogen bonds.

Comment

There is much interest in modification of ligand reactivity on complex formation, particularly in the oxidation and reduction of coordinated ligands (Constable, 1990; Chen et al., 1994). In the presence of suitable reagents, a complex in which a metal ion has an atypical oxidation number can undergo an intramolecular reaction that generates a complex with an oxidized form of the ligand. We describe here the crystal structure of the title compound, (I), in which one of the methyl groups in the starting ligand C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- N-acetic acid has been oxidized to a hydroxymethyl group.

(I)

The coordination around the $\mathrm{Co}^{\mathrm{III}}$ ion is six-coordinate in a distorted octahedral geometry, with the four N atoms of the macrocyclic ligand in equatorial positions and two O atoms in axial positions. This macrocyclic ligand is hexadentate whereas
the unoxidized ligand is pentadentate (Xu et al., 1988; Panneerselvam et al., 1998). The additional ligating - $\mathrm{CH}_{2} \mathrm{OH}$ group arises by oxidation of the original. House et al. (1984) found that direct O_{2} oxidation of trans- $\left[\mathrm{CoCl}_{2}\right.$ (C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) $] \mathrm{ClO}_{4}$ in refluxing methanol containing triethylamine resulted in the oxidation of one of the geminal dimethyl groups to form a pentadentate $\mathrm{N}_{4} \mathrm{O}$ ligand with a coordinated $-\mathrm{CH}_{2} \mathrm{OH}$ group. The present complex is similar. The macrocyclic ligand adopts the usual stable conformation with the two six-membered rings in the chair form and the two fivemembered rings in the gauche form. The four chiral N atoms are $1 R S, 4 R S, 8 S R$ and $11 S R$, and the methyl C atoms are $7 R S$, $12 R S$ and $14 S R$. The configuration of the four chiral N atoms in the complex cation corresponds to that of the trans-III diastereomer of planar $[\mathrm{Ni}(1,4,8,11$-tetraazacyclotetradecane) $]^{2+}$ (Bosnich et al., 1965).

Figure 1
The structure of the cation in (I) showing 30\% probability displacement ellipsoids. The chloride anion, uncoordinated water, perchlorate anion and H atoms have been excluded for clarity.

The average Co -N distance $[1.985$ (3) \AA] is similar to that in the trans-dichloro(1,4,8,11-tetraazacyclotetradecane)cobalt(III) cation [1.978 (4) Å; Sosa-Torres \& Toscano, 1997], but longer than that in the $\left[1,4-N, N^{\prime}\right.$-bis(carboxymethyl)-1,4,8,11tetraazacyclotetradecane]cobalt(III) cation [1.969 (4) \AA; Ware et al., 1996]; it is shorter than that in the trans-dichloro-(2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane)cobalt(III) cation [2.011 (7) \AA; Bembi et al., 1991]. The $\mathrm{Co}-\mathrm{O}$ (carboxyl) distance $[1.867$ (2) \AA] is shorter than that found in the $\left[1,4-N, N^{\prime}\right.$-bis(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane]cobalt(III) cation [1.887 (3) and 1.892 (3) \AA; Ware et al., 1996]. The Co-O(hydroxy) distance [1.925 (2) \AA] is shorter than that found in the chloro(5-hydroxymethyl-5,7,12,12,14-pentamethyl-1,4,8,11-tetraazacyclotetradecane)cobalt(III) cation ($1.963 \AA$; House et al., 1984). Hydrogen bonds (Table 2) between the imino groups, the chloride anion, the disordered perchlorate anion and the water molecule help stabilize the crystal structure.

Experimental

Samples of $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the ligand, i.e. C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- N-acetic acid, were prepared according to literature methods (Bauer \& Drinkard, 1960; Xu et al., 1988). $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~g})$ and the ligand (1.0 g) were suspended in water (50 ml). The mixture was heated on a water bath for 2 h . An aliquot of aqueous $\mathrm{HCl}(4 \mathrm{ml}$, $12 \mathrm{M})$ was added dropwise to the solution. The solution was heated for another $30 \mathrm{~min}, \mathrm{NaClO}_{4}(4.0 \mathrm{~g})$ was added and the solution was cooled. The green powder obtained was filtered off, the filtrate left to stand in air and purple crystals were obtained. Crystals suitable for X-ray analysis were obtained from 0.1 M HCl by slow evaporation.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right) \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=569.36$
Monoclinic, $P 2_{1} / n$
$a=10.789$ (3) A
$b=8.918$ (2) A
$c=25.847$ (4) A
$\beta=91.79(2)^{\circ}$
$V=2485.6(8) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.795, T_{\text {max }}=0.858$
4613 measured reflections
4361 independent reflections
2981 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.109$
$S=1.013$
4361 reflections
339 parameters

$$
\begin{aligned}
& D_{x}=1.521 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=5.97-15.75^{\circ} \\
& \mu=0.955 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Pillar, purple } \\
& 0.25 \times 0.22 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {int }}=0.047 \\
& \theta_{\max }=25^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=0 \rightarrow 10 \\
& l=0 \rightarrow 30 \\
& 3 \text { standard reflections } \\
& \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

$$
\begin{gathered}
\text { H-atom parameters constrained } \\
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0518 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected bond lengths (\AA).

Co1-O2	$1.867(2)$	$\mathrm{Co} 1-\mathrm{N} 4$	$1.967(3)$
Co1-O1	$1.925(2)$	$\mathrm{Co} 1-\mathrm{N} 2$	$1.997(3)$
Co1-N3	$1.966(3)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.011(3)$

The maximum 2θ for data collection is 50.0° and the data collection would not go beyond this limit because of the crystal quality. The H atoms were fixed geometrically, but H atoms of the water molecule and the hydroxy group were located from the difference Fourier map. All H atoms were refined with constraints.

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1 \cdots \mathrm{Cl} 2$	0.99	1.88	2.865 (2)	175
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{Cl} 2$	0.91	2.46	3.350 (3)	167
$\mathrm{N} 3-\mathrm{H} 1 \mathrm{~N} 3 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.91	2.40	3.304 (3)	173
$\mathrm{N} 4-\mathrm{H} 1 \mathrm{~N} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.91	1.98	2.854 (4)	160
OW1-H1OW \ldots. 33	0.84	2.08	2.840 (4)	150
OW1-H2OW . . $\mathrm{O}^{\text {iii }}$	0.88	2.23	2.918 (12)	135
OW1-H2OW . . $\mathrm{O}^{\text {5 }}{ }^{\text {iii }}$	0.88	2.21	2.975 (14)	145

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x,-y,-z$; (iii) $x, y-1, z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $N R C V A X$; software used to prepare material for publication: SHELXL97.

The authors thank the National Science Council, ROC, for support under grants NSC89-2811-M007-018, NSC89-2112-M007-043 and NSC89-2113-M007-032.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1092). Services for accessing these data are described at the back of the journal.

References

Bauer, H. F. \& Drinkard, W. C. (1960). J. Am. Chem. Soc. 82, 5031-5032.
Bembi, R., Drew, M. G. B., Singh, R. \& Roy, T. G. (1991). Inorg. Chem. 30, 1403-1406.
Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.
Chen, B. H., Lai, C. Y., Chung, C. S., Liao, F. L. \& Wang, S. L. (1994). J. Chin. Chem. Soc. (Taipei), 41, 627-629.
Constable, E. C. (1990). Metals and Ligand Reactivity, pp. 208-227. Chichester: Ellis Horwood.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
House, D. A., Harnett, M., Robinson, W. T. \& Couldwell, M. C. (1984). J. Chem. Soc. Chem. Commun. pp. 979-980.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Panneerselvam, K., Lu, T. H., Chi, T. Y., Chung, C. S., Chen, Y. J. \& Kwan, K. S. (1998). Acta Cryst. C54, 25-27.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. University of Göttingen, Germany.
Sosa-Torres, M. E. \& Toscano, R. A. (1997). Acta Cryst. C53, 1585-1588.
Ware, D. C., Tonei, D. M., Baker, L.-J., Brothers, P. J. \& Clark, G. R. (1996). J. Chem. Soc. Chem. Commun. pp. 1303-1304.
Xu, J., Ni, S. \& Lin, Y. (1988). Inorg. Chem. 27, 4651-4657.

